Digital Circuits ECS 371

Dr. Prapun Suksompong

 prapun@sitit.tu.ac.th Lecture 12Office Hours:
BKD 3601-7
Monday 9:00-10:30, 1:30-3:30 Tuesday 10:30-11:30

Announcement

- No new HW.
- Reading Assignment
- Chapter 6: 6-5, 6-8, 6-9

Review: BIN/DEC Decoder

- Many output lines.
- Only one of the output line is asserted at any time.
- To find out which output line is asserted, consider the inputs as one binary number. Convert this binary number to a decimal number. This decimal number tells which output line is asserted by the inputs.

Truth Tables of Basic Decoder

2:4 DEC

Input		Output			
I_{1}	I_{0}	Y_{3}	Y_{2}	Y_{1}	Y_{0}
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

3:8 DEC

Input				Output								
A_{2}	$\mathrm{~A}_{1}$	$\mathrm{~A}_{0}$	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}		
0	0	0	0	0	0	0	0	0	0	1		
0	0	1	0	0	0	0	0	0	1	0		
0	1	0	0	0	0	0	0	1	0	0		
0	1	1	0	0	0	0	1	0	0	0		
1	0	0	0	0	0	1	0	0	0	0		
1	0	1	0	0	1	0	0	0	0	0		
1	1	0	0	1	0	0	0	0	0	0		
1	1	1	1	0	0	0	0	0	0	0		

Decoder Expansion

 decoder from smaller ones?Construct a 3 -to- 8 decoder from two 2 -to- 4 decoders

Decoder Expansion

 decoder from smaller ones?Construct a 3 -to- 8 decoder from two 2 -to- 4 decoders

Decoder Expansion

 decoder from smaller ones?Construct a 3-to-8 decoder from two 2-to-4 decoders

Decoder Expansion

 decoder from smaller ones?Construct a 3 -to- 8 decoder from two 2 -to- 4 decoders

Decoder Expansion

 decoder from smaller ones?Construct a 3-to-8 decoder from two 2-to-4 decoders

Decoder Expansion

Construct a 3 -to- 8 decoder from two 2 -to- 4 decoders:
Observe that the truth table of the 3:8 DEC contains two truth tables of the $2: 4 \mathrm{DEC}$.

3:8 DEC

Input				Output														
A_{2}	$\mathrm{~A}_{1}$	$\mathrm{~A}_{0}$	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}								
0	0	0	0	0	0	0	0	0	0	1								
0	0	1	0	0	0	0	0	0	1	0								
0	1	0	0	0	0	0	0	1	0	0								
0	1	1	0	0	0	0	1	0	0	0								
1	0	0	0	0	0	1	0	0	0	0								
1	0	1	0	0	1	0	0	0	0	0								
1	1	0	0	1	0	0	0	0	0	0								
1	1	1	1	0	0	0	0	0	0	0								

2:4 DEC

Input		Output			
I_{1}	I_{0}	Y_{3}	Y_{2}	Y_{1}	Y_{0}
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Two large areas of 0s (negated)

Decoder Expansion

Construct a 3 -to- 8 decoder from two 2 -to- 4 decoders:

Decoder Expansion

Construct a 3 -to- 8 decoder from two 2 -to- 4 decoders:

Decoder Expansion

Construct a 3 -to- 8 decoder from two 2 -to- 4 decoders:

Decoder Expansion

A_{2} is connected to the EN of each 2:4 decoder to choose the 1 that we want.
$011_{2}=3_{10}$

Decoder Expansion

A_{2} is connected to the EN of each 2:4 decoder to choose the 1 that we want.
$111_{2}=7_{10}$

Decoder Expansion: Summary

- To increase the input by one bit ($2: 4$ to $3: 8$)
- Use two smaller decoders.
- Connect the lower significant bits to both decoders.
- Use the MSB to control which decoder is enabled.
- To increase the input by two bits (2:4 to $4: 16$)
- Start with four smaller decoders.
- Connect the lower significant bits to all four decoders.
- Use the two higher significant bits to control which decoder is enabled.

Four 2:4 DEC in this

Example

 column.Construct a 4:16 decoder with an active-LOW enable from three 74×139.

Use one more 2:4 DEC to control which of the four decoders is enabled.

74x138: 3:8 Decoder

- Active-LOW outputs
- Three enable inputs.

Example

Construct a 4:16 decoder with an active-LOW enable (EN) from two 74x138 decoder.

Because the 74 x 138 have both active-LOW EN and active-HIGH EN, we can use the extra bubble to replace the extra NOT gate.

This means " 1 ".

Construct a 5:32 decoder with active-LOW
Example outputs from two 74×154 and one inverter.

Exercise (Sample Exam Problem)

- Construct a 5:32 decoder with active-LOW outputs and one active-LOW EN.
- Use two 74 x154 and one inverter.

Solution

Decoder as General Purpose Logic

Any combinational circuit with n inputs and m outputs can be implemented with an n-to- 2^{n}-line decoder and m OR gate

Observe that the 3:8 decoder generates all possible minterms.

Example

Implement a full adder circuit with a decoder and OR gates

- $S=\sum_{X, Y, Z}(1,2,4,7)$
- $\mathrm{C}=\sum_{\mathrm{X}, \mathrm{Y}, \mathrm{Z}}(3,5,6,7)$

Inputs			Outputs	
X	Y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Note: If the decoder's output is active-LOW, then we use NAND gates instead of the OR gates.

Other Decoders

In general, a decoder converts coded information, such as binary number, into non-coded form.

Later, (if time permitted) we will talk about other types of decoder.

Binary-coded input

Multiplexing/Demultiplexing

- The multiplexer, or mux for short, is a logic circuit that switches digital data from several input lines onto a single output line in a specified time sequence.
- The demultiplexer (demux) is a logic circuit that switches digital data from one input line to several output lines in a specified time sequence

Switching
sequence control input

Switching
sequence
control input

Multiplexer (Data Selector)

- Select binary information from one of many input lines and directs the information to a single output line.
- Allow digital information from several sources to be routed onto a single line for transmission over that line to a common destination.
- Basic multiplexer has

1. Data-input lines
2. Single output line.
3. Data-select (control) inputs

Example: 4-to-1-line multiplexer

4:1 MUX: Logic Diagram \& Truth Table

Example

Multiplexer Expansion

Use two 4:1 MUXs and one 2:1 to create 8:1 MUX.

Multiplexer Expansion

Multiplexer Expansion

Control signals S_{0}, S_{1} simultaneously choose one of
$\mathrm{I}_{0}, \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$ and one of $\mathrm{I}_{4}, \mathrm{I}_{5}, \mathrm{I}_{6}, \mathrm{I}_{7}$

Multiplexer Expansion

Control signals S_{0}, S_{1} simultaneously choose one of
$I_{0}, I_{1}, I_{2}, I_{3}$ and one of $I_{4}, I_{5}, I_{6}, I_{7}$

MUX and Minterms

- 2:1 mux:Z = A'I0 + Al1
- $4: 1$ mux:Z = A'B'I0 + A'BI1 + AB'I2 + ABI3
- 8:1 mux:Z = A'B'C'IO + A'B'Cl1 + A'BC'I2 + A'BCI3 + AB'C'14 + AB'Cl5 + ABC'I6 + ABCI7

Mathematically, we may say that the output of the MUX is the weighted sum of all minterms (generated from the control variables) where the weights are the data inputs.

MUX as a Logic Function Generator

$2^{n}: 1$ MUX can be used to implement any function of n variables.

Example:

$$
F=\sum_{A, B, C}(0,2,6,7)
$$

Explanation:

$$
\begin{aligned}
Z= & \bar{A} \cdot \bar{B} \cdot \bar{C} \cdot I_{0}+\bar{A} \cdot \bar{B} \cdot C \cdot I_{1}+\bar{A} \cdot B \cdot \bar{C} \cdot I_{2}+\bar{A} \cdot B \cdot C \cdot I_{3} \\
& +A \cdot \bar{B} \cdot \bar{C} \cdot I_{4}+A \cdot \bar{B} \cdot C \cdot I_{5}+A \cdot B \cdot \bar{C} \cdot I_{6}+A \cdot B \cdot C \cdot I_{7}
\end{aligned}
$$

74x151: 8:1 MUX

$\overline{\bar{E}}$	S_{2}	S_{1}	So	Io	11	12	13	14	15	16	17	$\overline{\mathbf{Z}}$	Z
H	\times	H	L										
L	L	L	L	L	\times	H	L						
L	L	ᄂ	L	H	\times	L	H						
L	L	L	H	\times	L	\times	\times	\times	\times	\times	\times	H	L
L	L	L	H	\times	H	\times	\times	\times	\times	\times	\times	L	H
L	L	H	L	\times	\times	L	\times	\times	\times	\times	\times	H	L
L	L	H	L	\times	\times	H	\times	\times	\times	\times	\times	L	H
L	L	H	H	\times	\times	\times	L	\times	\times	\times	\times	H	L
L	L	H	H	\times	\times	\times	H	\times	\times	\times	\times	L	H
L	H	ᄂ	L	\times	\times	\times	\times	L	\times	\times	\times	H	L
L	H	ᄂ	ᄂ	\times	\times	\times	\times	H	\times	\times	\times	L	H
L	H	ᄂ	H	\times	\times	\times	\times	\times	L	\times	\times	H	L
L	H	L	H	\times	\times	\times	\times	\times	H	\times	\times	L	H
L	H	H	L	\times	\times	\times	\times	\times	\times	L	\times	H	L
L	H	H	ᄂ	\times	\times	\times	\times	\times	\times	H	\times	L	H
L	H	H	H	\times	L	H	L						
L	H	H	H	\times	H	L	H						

74×151: 8:1 MUX

Connection Diagram

Truth Table

Inputs				Outputs				
Select			Strobe S	Y	W			
C	B	A						
X	X	X	H	L	H			
L	L	L	L	D0	$\overline{\mathrm{DO}}$			
L	L	H	L	D1	$\overline{\mathrm{D} 1}$			
L	H	L	L	D2	$\overline{\mathrm{D} 2}$			
L	H	H	L	D3	D3			
H	L	L	L	D4	$\overline{\mathrm{D} 4}$			
H	L	H	L	D5	$\overline{\mathrm{D} 5}$			
H	H	L	L	D6	$\overline{\mathrm{D} 6}$			
H	H	H	L	D7	$\overline{\mathrm{D} 7}$			
$\begin{aligned} & H=\text { HIGH Level } \\ & L=\text { LOW Level } \\ & X=\text { Don't Care } \\ & \text { D0, D1...D7 }=\text { the level of the respective D input } \end{aligned}$								

74x151: Logic Diagram

74x157 Quad 2-Input MUX

- Four separate 2-input multiplexer.
- Each of the four multiplexers shares a common data-select line and a common Enable.

